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Incremental Substituent Effects Leading to Steric 
Blockade of the Boat-Like Six-Center Cope 
Rearrangement of ci's-l^-Dialkenylcyclobutanes1 

Sir: 

Although the rate of the chair-like, four-center Cope 
rearrangement of acyclic biallyls is faster than that of 
the boat-like, six-center one by a factor greater than 
exp((6000 cal/mol)/RT),2 there are several cases in 
the literature in which the order of preference is 
qualitatively reversed. Among the earliest examples 
so interpreted are the thermal transformations of 
cw-l,2-dialkenylcyclobutanes to m,cw-cycloocta-l,5-
dienes.3'4 The normal preference for the chair-like 
pathway in these systems should be diminished because 
of the high strain energy5 of the product, a cisjrans-
cycloocta-l,5-diene. Although the transient interme-
diacy of that substance cannot be excluded on purely 
energetic grounds,6 the present results strongly support 
the formulation3^9 of the rearrangement of cis-1,2-
divinylcyclobutane to cz's,cw-cycloocta-l,5-diene as a 
direct process via a boat-like transition state. More
over, they show how m-l,2-dialkenylcyclobutanes, 
already deprived of the normal chair-like pathway by 
product strain, can be subjected to incremental steric 
effects that gradually deny access even to the "second-
best" boat-like reaction. 

Successive treatments of dimethyl m-l,2-cyclobu-
tanedicarboxylate with NaAlH2(OCH2CH2OCHs)2 and 
CH3CH=PPh3 , followed by gas chromatographic (gc) 
separation on a AgN03-Carbowax 200 column, give 
cis-\,2-trans,trans-, cis-\,2-cis,trans-, and cis-\,2-cis,cis-
dipropenylcyclobutanes (cTT, cCT, and cCC).7 These 
substances are identified by nuclear magnetic resonance 
(nmr) and especially by infrared (ir) spectroscopy 
(XXmaxcTT, 965 cm-1; cCC, 740 and 695 cm-1; cCT, 
965 and 715 cm-1). 

Table I records the rates and products observed on 
pyrolysis of these three reactants and of c/s-l,2-divinyl-
cyclobutane3 (cDV) at 146.5° in the liquid phase. 

The data show that methyl substitution at the ter
minal carbons of the vinyl groups of cDV produces a 
regular decline in the rate of the boat-like rearrange
ment. In the transition state of cTT -»• 2, the major 
steric difference as compared to the case of cDV -+• 1 is 
the methyl-methyl interaction, MM. The same con-
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Table I. Rates and Products of Pyrolyses 
of cis-l,2-Dialkenylcyclobutanes 

-Boat- -Crossover-
Reactant Product kb, rel Product kc, rel 

181,000« Ĉ O 
cDV 1 

nr^^ f / = Y ' 41-80Ob 

cTT 

435« 

\c,d 

24« 

200c 

° Calculated from published activation parameters.3 * Measured 
directly. " Calculated as the product of the observed overall first-
order rate constant for disappearance of cCT (or cCC) and the frac
tion of the indicated 3,4-dimethylcycloocta-l,5-diene in the product 
mixture, which also contains trans-\,2-cis,trans- (respectively, cis,-
cw)-dipropenylcyclobutanes from cCT and cCC, as well as pipery-
lene and 3-methyl 4-propenylcyclohexenes. d kb(sbs) = 1.3 X 10 -7 

sec -1. 

formation in the case of cCT —»- 3 replaces this with two 
methyl-hydrogen interactions, MH, but also introduces 
a methyl-ring interaction, MR. Finally, the reaction 
cCC -*• 2 has one MM and two MR interactions. On 
the assumption that the interaction free energies re
main constant in the series, the relative rate data of 
Table I for the boat-like reactions can be expressed in 
the form of the following parameters (in kcal/mol): 
A A F M H * = 0.29; AAFMM* = 1.22; AAFMR* = 
4.43. These steric effects, when combined with the 
observed stereochemistry of the products (both double 
bonds cis, methyl configurations cis from cTT and 
cCC, trans from cCT), strongly suggest boat-like transi
tion states for the Cope rearrangements of cDV, cTT, 
and the major portion of cCT. 

By far the largest steric effect is the methyl-ring inter
action,8 which comes into play in the boat-like transi
tion states from the reactants having cis propenyl groups 
(cCT and cCC). Not only does this depress strongly 
the rate of the unperturbed boat-like reaction of cDV, 
but by doing so, it permits the observation of a much 
slower "crossover" process which gives a different 
product. The crossover and boat-like reactions are 
distinguished by the configuration of the methyl groups 
in the product 3,4-dimethylcycloocta-l,5-diene.9 Un
detectable in the Cope rearrangement of cTT, cross
over begins to emerge in the cCT case (95 % boat-like, 
5% crossover) and becomes dominant in cCC (0.5% 
boat-like, 99.5% crossover). 

Two mechanisms for the crossover reaction are 
presently under consideration. The first is a direct 

(8) Qualitative evidence for a large retarding effect of this type has 
been provided recently by W. Grimme, / . Amer. Chem. Soc, 94, 2525 
(1972). 

(9) Ozonolyses of 2 and 3 give succinic acid and (respectively) meso-
and rac-2,3-dimethylsuccinic acids. 

Communications to the Editor 



7598 

cCT 

boat 

cCC 2 

transformation, for example, cCC -*• 3, by way of a 

forbidden'' 

H CH3 

tCC 3 

transition state geometry corresponding to that of an 
orbital symmetry "forbidden" concerted process.10 

The second is a two-step reaction involving a quasi-
chair transition state in a preliminary rearrangement, 
cCC —*• ?ran5-3,4-dimethyl-c/vrarcs-cycloocta-l,5-diene 
(4), followed by geometric isomerization of the trans 
double bond of 4 Io give the c/s,ra-diene 3.12 

H f H 3 
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Stereospecific Double Rearrangement of 
?rans-3,4-Dimethyl-c75,W"arts-cycloocta-l,5-diene to 
ra-S^-Dimethyl-cKjC/s-cycloocta-l^-diene1 

Sir: 

The chemistry of the highly stiained cis,trans-cyc\o-
octa-l,5-diene ring system2 (1) is largely unexplored. 
Because there is a possibility that the corresponding 
3,4-dimethyl derivatives 2 and 3 may be involved in the 
thermal nonboat, "crossover" rearrangement of cis-
1,2-cis,trans- and ds-l,2-c/s,m-dipropenylcyclobutanes 
(cCT and cCC, respectively),3 we have carried out a 
study of the pyrolysis of trans-3,4-dimethyl-cis,trans-
cycloocta-l,5-diene (3). The present paper reports a 
new thermal rearrangement of this compound. 

In a procedure modeled after that used to invert 
OT,cw-cycloocta-l,5-diene to the cis,trans isomer I,4 

pure //-an^-3,4-dimethyl-c«,cw-cycloocta-l,5-diene (4)3 

reacts with m-chloroperbenzoic acid to give the mono-
epoxide, which successive treatments with lithium di-
phenyl phosphide in tetrahydrofuran and then with 
CH3I convert to the cis,trans-diene 3. 

k ^ L ^J^Me 
Me 

1 : R = H 

2 : R = Me 

Compound 3 can be purified by vpc on an ammonia-
purged column, but only with severe losses. The sub
stance shows an infrared (ir) spectrum indicating5 both 
trans (Xmax 990 cm -1) and cis (Xmax 720 cm -1) double 
bonds. Concentrated solutions or neat samples de
posit a solid (dimer or polymer) upon standing a few 
hours at room temperature. Treatment with T2-
CHCl3 converts 3 to 4. 

Attempts to carry out vpc on 3 with the dibutyl tetra-
chlorophthalate capillary column used in the study of 
the Cope rearrangements of m-l,2-dialkenylcyclobu-
tanes3 give a complex trace of peaks with retention 
times intermediate between those of decane (internal 
standard) and ?raM5,-3,4-dimethyl-c«,c/s-cycloocta-l,5-
diene (4).6 This would have precluded the detection 
of small amounts of 3 under our previous analytical 
conditions,3 so that 3 cannot be ruled out as a possible 
intermediate in the Cope rearrangement of cCC. 

Pyrolysis of a 0.7 M solution of 3 in decane at 146.5° 
for 1000 sec gives a substantial amount of polymer and 
an identifiable material balance (vpc against internal 
standard) of 35%. Aside from 4, which probably is 
not formed by pyrolysis,6 there are only two volatile 
products, which appear in the ratio 12:1. The major 
product is cis-3,4-dimethyl-cis,cis-cyc\oocta-'l,5-diene 
(5), in which there has been formal geometric isomeriza-
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